Lagrangian formulation of symmetric space sine-Gordon models
نویسندگان
چکیده
منابع مشابه
Lagrangian Formulation of Symmetric Space sine-Gordon Models
The symmetric space sine-Gordon models arise by conformal reduction of ordinary 2-dim σ-models, and they are integrable exhibiting a black-hole type metric in target space. We provide a Lagrangian formulation of these systems by considering a triplet of Lie groups F ⊃ G ⊃ H . We show that for every symmetric space F/G, the generalized sine-Gordon models can be derived from the G/H WZW action, p...
متن کاملAn O(N) symmetric extension of the Sine-Gordon Equation
Fred Cooper, 2, ∗ Pasquale Sodano, † Andrea Trombettoni, ‡ and Alan Chodos § T-8, Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos NM 87545 National Science Foundation, Arlington, VA 22230 3 Dipartimento di Fisica e Sezione I.N.F.N., Universita di Perugia ,Via A. Pascoli I-06123, Perugia, Italy. 4 Dipartimento di Fisica e Sezione I.N.F.N., Universita di Perugia, Via A. ...
متن کاملExcited State Destri – De Vega Equation for Sine–gordon and Restricted Sine–gordon Models
We derive a generalization of the Destri De Vega equation governing the scaling functions of some excited states in the Sine-Gordon theory. In particular configurations with an even number of holes and no strings are analyzed and their UV limits found to match some of the conformal dimensions of the corresponding compactified massless free boson. Quantum group reduction allows to interpret some...
متن کاملGeneralized solution of Sine-Gordon equation
In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.
متن کاملNoncommutative Sine-gordon Model Extremizing the Sine-gordon Action
As I briefly review, the sine-Gordon model may be obtained by dimensional and algebraic reduction from 2+2 dimensional self-dual U(2) Yang-Mills through a 2+1 dimensional integrable U(2) sigma model. I argue that the noncommutative (Moyal) deformation of this procedure should relax the algebraic reduction from U(2) → U(1) to U(2) → U(1)×U(1). The result are novel noncommutative sine-Gordon equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters B
سال: 1996
ISSN: 0370-2693
DOI: 10.1016/0370-2693(96)00026-3